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Abstract

A model is presented of a particulate composite containing spherical inclusions, each of which are surrounded by a
localized region in which the elastic moduli vary smoothly with radius. This region may represent an interphase zone in
a composite, or the transition zone around an aggregate particle in concrete, for example. An exact solution is derived
for the displacements and stresses around a single inclusion in an infinite matrix, subjected to a far-field hydrostatic
compression, and is then used to derive an approximate expression for the effective bulk modulus of a material contain-
ing a random dispersion of these inclusions. The analogous conductivity (thermal, electrical, etc.) problem is then dis-
cussed, and it is shown that the expression for the normalized effective conductivity corresponds exactly to that for the
normalized effective bulk modulus, if the Poisson ratios of both phases are set to zero.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The behavior of composite materials is greatly influenced by the interface between the matrix and the
inclusions. The earliest models for the mechanical behavior of composites assumed that the two compo-
nents are both homogeneous, and are perfectly bonded across a sharp and distinct interface (Eshelby,
1957; Hashin and Shtrikman, 1961). Later models considered the effect of sliding across the interface
(Aboudi, 1989; Jasiuk et al., 1992), debonding between the inclusion and matrix (Benveniste, 1984), and
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other effects. In some materials, the components are well-bonded to each other, but the interface is not
sharp. In polymer—fiber composites, for example, as well as in some metal-matrix composites, diffusion
of material between the matrix and fiber may create an elastic moduli profile that smoothly varies from that
of the fiber to that of the matrix (Theocaris, 1992). In some polymer composites, a binding agent is applied
to the fibers to promote adhesion between the fiber and the matrix (Drzal et al., 1983). This binding agent
may diffuse into the matrix during the curing process, leading to a gradient in resin concentration. This gra-
dient, in turn, leads to a gradient in the elastic moduli. In other cases, such as the interfacial transition zone
around inclusions in mortar or concrete (Lutz et al., 1997), the moduli of the matrix varies as the inclusion
particle is approached, but the interface with the inclusion is still distinct, since the inhomogeneous region is
restricted to the matrix phase.

Recognition of the importance of modeling the “interphase zone’ in composite materials has existed for
some time. Hashin and Rosen (1964) developed a model for composites in which a thin layer existed outside
of each inclusion. The elastic moduli were uniform within this layer, but different from those in the matrix
or inclusions. Herve and Zaoui (1993), Hashin and Monteiro (2002) and others have extended this model
by considering a finite number of concentric shells around each inclusion, with the moduli uniform within
each shell. Theocaris (1992), Jayaraman and Reifsnider (1992), Jasiuk and Kouider (1993) and others have
attempted to account for smooth variation of the moduli, by assuming a power-law variation of moduli
with radius, although they still treated the interphase zone as a distinct layer, surrounded by “pure’” matrix.
Lutz and Zimmerman (1996) modeled the moduli outside of the inclusion with a constant term plus a
power-law term, thereby allowing a smooth transition between the interphase layer and the matrix. They
used the method of Frobenius series to derive a closed-form solution for a body containing such an inclu-
sion, under hydrostatic far-field loading, and thereby found an expression for the effective elastic moduli of
a material that contained a dispersion of such inclusions. The model was successfully used by Lutz et al.
(1997) to predict the bulk modulus of concrete. A similar approach can be used for the shear modulus
and for thermal/electrical conductivity.

2. Effective bulk modulus

The effective bulk modulus of a composite that has an inhomogeneous interphase zone around each
inclusion can be estimated by first solving the problem of a matrix containing a single such inclusion,
subjected to a far-field hydrostatic stress. The resulting deformation will have radial symmetry. The only
non-zero displacement component will be the radial component, which will vary only with the r co-ordi-
nate; it can therefore be denoted by u(r). The only non-zero components of the strain will be (Sokolnikoff,
1956)

du u
o S = &pp = —. 1
€ dr Epp = €00 p (1)

The only non-trivial equation of stress equilibrium will be

dr,, 27, —T¢p — 7
LI T e T 00,

2
dr r (2)
The stress—strain equations take the usual form for an isotropic material

T = /1(8,«,' + Epop + 809) + 2#817' (3)

and similarly for the other two normal stresses. (The moduli 4 and u are related to the standard bulk and
shear moduli by K = 4 + 2u/3, G = u.) If we combine Egs. (1)—(3), and allow the moduli to vary with r, we
arrive at
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du 2du 2 , s du N
F+;a—ﬁu| +[/1(r)+2,u(r)}5+2/1(r);*0' (4)

[4(r) + 2u(r)]
We now assume that the moduli in the matrix vary smoothly and monotonically with radius, and approach
those of the “pure matrix” component as r — co. A convenient algebraic form that satisfies these condi-
tions is the following (Theocaris, 1992; Lutz and Zimmerman, 1996):

Mr) = don + Cig = dn)(r/a) ", () = p + (pig — 1) (r/a) ", (5)

where a is the radius of the inclusion, the subscript ‘m’ refers to the matrix, and the subscript ‘if” refers to the
interface with the inclusion (see Fig. 1). The parameter 5 controls the “thickness” § of the interphase zones,
roughly according to the relationship 6~2.3a/B (Lutz et al., 1997). In order to be able to solve the resulting
equations analytically, f must be an integer. Theocaris (1992) fit power-law-type curves to elastic moduli in
an interphase zone in a set of E-glass fiber—epoxy resin composites, and found values of § on the order of
100. Lutz et al. (1997) modeled the porosity gradient in the interfacial transition zone of concrete using val-
ues of f on the order of 20. Hence, the restriction of f to integral values poses no limitation, in practice.

Substitution of Eq. (5) into Eq. (4) yields an ordinary differential equation that has a regular singular
point at infinity, and which can be solved using the method of Frobenius series (Lutz and Ferrari, 1993;
Mikata, 1994; Lutz and Zimmerman, 1996). The general solution for the displacements outside of the inclu-
sion is (Lutz and Zimmerman, 1996)

u(r) = Aer Tg(a/r)” —|—A2r2 Topis(a/r)™, (6)
n=0 n=0

where {A4,4,} are constants, I'y = I'5 =1, and the remaining non-zero I, are found from the following
recursion relationship:

_ AWM — Muw)[n® — (B+3)n — ] — 2B(%ir — /m)}
rn+lj - Fm (7)
(n+p)(n+ B —3)(Zm + 2p4m)
where M = 4 + 2u is the compressional wave modulus. These series will converge if M;s <2M,,, i.e., when-

ever the interphase is softer than the matrix. If M;> 2M,,, convergence can be achieved by applying an
Euler transformation to the series (Lutz and Ferrari, 1993).
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Fig. 1. Schematic diagram of the shear modulus variation described by Eq. (5).
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Now consider a homogeneous spherical inclusion of radius a, surrounded by a matrix having an inho-
mogeneous interphase zone, as described above, subjected to a far-field hydrostatic stress, —P. The moduli
of the inclusion are denoted by {/;, 14;}. Outside of the inclusion, in the region r > a, the solution will be
given by Eq. (6). Inside the inclusion, the solution must have the form appropriate for radially-symmetric
deformations of a homogeneous material (Sokolnikoff, 1956)

u(r) = Bir + Byr 2. (8)

Four boundary conditions are needed to determine the four constants {4, 4,, By, B>}: 1,,, — —P as r — oo,
7, and u must be continuous at r = ¢, and u must be finite as »r — 0. These conditions lead to the following
values for the constants:

Bi=dA) Ty+Ary Iipes, Bi=0, A1 =-P/3Kn, (9)
n=0 n=0
P 3(Ki — Kig) > Tup + (Zie + 245¢) D nPLp
= (50-) o = . (10)
" 3(Ki = Kir) 2 Fapys + (A + 2465¢) D (1B + 3) i3
n=0 n=0

The solution for the stresses and displacements in and around a single inclusion can be used to estimate
the effective bulk modulus of a material that contains a dispersion of such inclusions. In general, the effec-
tive bulk modulus K. of an inhomogeneous body can be found by subjecting the body to hydrostatic stress
of magnitude — P, and then comparing the strain energy stored in the body to that which would be stored in
an identically-shaped homogeneous body (Willis, 1981). Consider a spherical region of radius b, centered
on a single inclusion. In the absence of body forces, the strain energy stored in this region can be computed
from (Sokolnikoff, 1956)

U:l/ T udd, (11)
2 0Q

where Q is the spherical region r < b, 0Q is the boundary r = b, u is the displacement vector, and T is the
traction vector. In the present problem, the only non-zero component of the displacement vector is the ra-
dial displacement, u, and the only non-zero component of the traction is 7,.. Hence,

1
U= 3 / T, (b)u(b)d4 = 2nb*1,,.(b)u(b). (12)
00
For the hypothetical homogeneous body, the radial displacement would be given by u(r) = t,.(b)r/3K.g, so
that
1.(b)b _ 21b’[c,, (b))

5 2
U = 2nb"1,,(b) Wy~ Ky (13)

Equating the strain energy stored in the actual inhomogeneous body, as given by Eq. (12), to that stored in

the homogeneous body, as given by Eq. (13), yields
bt,.(b) 7, (b)

[{e frng = . 14
"7 3u(b)  3u(b)/b (14)
In order to utilize our solution for the single inclusion in an infinite body, we must take the limit as

b — oo. If we were to do this by fixing «, the influence of the inclusion would disappear. Instead, we first

put (a/b)® = ¢, the volume fraction of inclusions, and then let b — oo, retaining only terms of order ¢°
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1+(B/3)

and ¢!. This is justified by noting that these terms will be of the form ¢ AP ete., and we expect in
1+ (B/3)

practice that > 1. Moreover, Eq. (7) shows that the coefficient of ¢ will have a factor of f in its
denominator, compared to the coefficient of ¢'; the higher-order coefficients will have additional factors
of f. As an example, for the mortar samples considered by Lutz et al. (1997), which had = 20, the relative
contribution of the higher order terms would be less than 1%, for inclusion concentrations as high as 60%.
(As f is inversely proportional to the interphase thickness, our solution can be thought of as being asymp-
totically exact in the two limits of small inclusion concentration, and thin interphase.) With this in mind, we
find that

Ker 1+ (4py/3Km)fe

Kn 1—fe ’ (15)
where
3(Ki = Kig) D Tup + (Aie + 2p50) > nPLg
= —— = | (16
! 3(Ki — Kie) > Lhpis + (Zie + 244¢) D (np + 3)F"/f+3
n=0 n=0

In the limiting case where the interphase zone is homogeneous, I'y = I'; = 1, all other I',, =0, Kjs — K,
etc., so f— 3(K; — K)/(3K; + 4uy), and Eq. (15) reduces to the result found by Mori and Tanaka
(1973), Christensen (1979), and others.

Fig. 2 shows the effective bulk modulus as a function of the inclusion concentration, for the case where
the inclusions are five times stiffer than the pure matrix, f = 10 (corresponding to an interphase whose
thickness is about 1/8th of an inclusion diameter), and several values of the parameter D = (K, — Kj)/
K,,. The Poisson ratio is taken to be 0.25 throughout the matrix, interphase, and inclusion. The curve
for D = 0 coincides with the Mori-Tanaka prediction, as well as with the Hashin—Shtrikman lower bound
(Hashin and Shtrikman, 1961). Negative values of D correspond to an interphase that is stiffer than the
pure matrix; this can occur in a metal-matrix composite, for example, if the inclusion material diffuses into
the matrix.
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Fig. 2. Effective bulk modulus of a material containing a volume fraction ¢ of inclusions, each surrounded by an interphase zone
described by Eq. (5). The inclusion is taken to be five times stiffer than the pure matrix, and the Poisson ratios of all phases are taken to
be 0.25.
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3. Analogy with conductivity problem

The effective conductivity (thermal, say) is investigated by starting with the basic problem of an inclusion
perturbing an otherwise uniform temperature gradient. If the governing equation is expressed in a spherical
co-ordinate system centered on the inclusion, with the z-axis aligned with the far-field temperature gradient
of magnitude G, the problem is governed by

where T is the temperature and k(r) is the thermal conductivity. Using the standard expressions for the gra-
dient operator in spherical co-ordinates (Arfken, 1985), this equation can be written explicitly as

1of, .oT 1 o[. k(r)orT 1 o[ 1 k()or

2o [r k) 6r} T sin0 20 {Sm@ r 20) T rein03g |sm0 r 3] (18)
The boundary conditions for the temperature are that as

r—oo, T=Ty+Gz=Ty+ Grcosb, (19)

where 6 is the angle of inclination from the z-axis, along with the usual continuity conditions at the inclu-
sion/matrix interface for the temperature and flux. Inserting a temperature field of the form
T(r,0,¢) = To+ f(r)cos into Eq. (17) yields the following equation for f{r):

2
df 2df 2], df

gzt rar | TG =0 (20)

We now note that if we set A(r) =0 in Eq. (4), which corresponds to setting the Poisson ratio equal to
zero, we have 2u = 3K in the elastic problem, and Eq. (4) reduces precisely to Eq. (20), with the correspond-
ence 3K(r) < k(r), u(r) < f(r). In particular, the analogy holds in regions that are locally homogeneous,
such as inside the inclusion, in which case (4) and (20) apply, with K'(r) = k'(r) = 0. Hence, the two prob-
lems are governed by the same differential equation.

The analogy can be shown to hold all the way through to the calculation of the effective properties. Con-
sider first the four boundary/interface conditions that were imposed in the displacement function. With
A =01n Eq. (3), the radial stress is given by t,, = 2u(du/dr) = 3K(du/dr). Hence, the far-field boundary con-
dition on the radial displacement is that du/dr = —P/3K,, as r — co. Using the already observed corre-
spondences of 3K <>k and u(r) < f(r), this condition transforms into df/dr = —P/k,,. From Eq. (18),
however, we see that df/dr — G as r — oco. Applying Fourier’s law to Eq. (18), far from the inclusion, where
k(r) =k, the far-field heat flux, oriented along the z-axis, is found to be given by ¢.. = —kn(0T/
0z) = —k,,,G. Hence, G = —q../ky, which shows that df/dr — —¢g../km. So, to maintain the analogy, we
see that the far-field heat flux, ¢, plays the role of the far-field hydrostatic pressure, P.

Continuity of the temperature at the outer boundary of the inclusion requires continuity of f at r = a.
This is directly analogous to the continuity of the radial displacement u at » = a. From the discussion in
the preceding paragraph, we see that continuity of the radial stress at r = « is equivalent to continuity of
the term 3K(du/dr). By our analogy, this corresponds to continuity of k(df/dr), which is equivalent to con-
tinuity of the heat flux, since (07/0r) = (df/dr)cos0. Finally, both u and f must be finite at the origin. Thus,
both problems are governed by the same differential equation, and the same set of boundary/interface
conditions.

Lastly, we must show that the calculation of the effective conductivity follows in analogy with the cal-
culation of the effective bulk modulus. We start with the fact (Christensen, 1979) that the effective conduc-
tivity can be defined through the equation (q.) = —k.gx (07/0z), where the angle brackets denote a volume
average over the sphere of radius . From Gauss’ theorem, the volumetric average of the temperature gra-
dient can be expressed as
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(VT) = /VTdV—l/TndA—l/Te,dA, (21)
4 oQ 4 0Q

where e, is the unit vector in the radial direction. Taking the z-component of both sides gives

1 1
(0T /0z) = (VT - ¢,) = —/ Te,-esz:—/ T cos0d4
V V' Joo

o0
4nb3/¢ /90 T(b, ¢, 0) cos Ob* sin 0dOdep
3 .
m dd’ - T(r,¢,0)cos0sin0do
_2 [To + f(b) cos 8] cos Osin 0dO
2b Jo—o
-2 [Ty cos Osin 0 + f(b)cos*0'sin 6] d6
2b Jo—o
3(b) [T sy £ (b)
T =7 2
b /Uzocos 0sin 0do 5 (22)

Again making use of Gauss’ theorem, the average heat flux can be expressed as (Markov, 2000)

@=_1

7 [ VT m = /k T da, (23)

where r is the position vector from the origin. Recalling that T(r,0,¢) = T+ f(r)cos0, we have
0T /or = f'(r) cos 6, so

(q) = _71 [Q k(r)f'(r) cos OrdA. (24)

Taking the z-component of both sides, and making use of the fact that r = b and r = be, on 0Q, gives

(g.)={q-e) = _71 /asz k(b)f'(b) cos Obe, - €,d4 = _71 k(b)f'(b)bcos*0d4

aQ
=3k(B)f'(b) [ [ , .
:% /¢ | sinteostodna
_ —3k(b)f'(b) / " Sin 0cos?0d0 = —k(b)f"(b). (25)
2 0=0

Using the results (22) and (25), the effective conductivity then follows as:
fo_ ) k) )

= = . 26
@1/ez) ~ S(b)b 26)
As before, we take b to be large when evaluating (26), in which case k(b) — k,, and so
ket .. [bf'(b)
Ketr _ , 27
PR [ 7(b) @7

Now return to expression (14) for the effective bulk modulus. Using Egs. (1) and (3), and recalling that
3K = 2G (because our analogy requires v = 0!), we see that
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.. bK(b)u'(b)
Ker = l}LTIOlO W (28)
But as b increases, K(b) — K, so we see that
Kar . [bu (D)
=1 . 2
K s [ u(b) (29)

Comparison of Egs. (27) and (29) shows that, since f was the analogue of u, the normalized effective con-
ductive is indeed the analogue of the normalized bulk modulus!

Hence, we conclude that if the conductivity in the interphase zone varies according to an equation such
as those given in (5), the normalized effective conductivity, keg/ky, will be given by Egs. (15) and (16), with
(4um/3Ky) — 2 in Eq. (15), and {4 — 0,2u,3K — k} in Eq. (16). Using this correspondence, the effective
conductivity is plotted in Fig. 3, for the case in which the inclusion is five times more conductive than
the pure matrix. The parameter D is now defined by D = (k,, — kif)/km. The slight differences between
the curves in Figs. 2 and 3 arise solely from the fact that in Fig. 2 the Poisson ratio was taken to be
0.25, whereas Fig. 3 applies to the conductivity problem, and is analogous to the bulk modulus only when
v=0.

According to the discussion given above, the analogy would hold for any radially-symmetric variation of
the material properties. Moreover, in any particular material, it seems reasonable to assume that if Eq. (5)
provides a good model of the elastic moduli in the interphase zone, the conductivity variations could also be
fit with such a power law function, because these property variations would reflect some underlying vari-
ation in microporosity or volume fraction. Of course, there would be no reason for ratios of the parameters
{K:K;:Kir} to be precisely the same as the ratios of the conductivity parameters. However, this would not
be necessary in order to be able to use the above-derived solution for both properties, with the appropriate
numerical values inserted into Egs. (15) and (16).

The correspondence between the effective bulk modulus and effective conductivity seems to be related to
the relationship between the bounds on effective properties discussed by Milton (1984), which involved the
assumption that 2 > 0, which is equivalent to the condition of a non-negative Poisson ratio. As a simple

w
o
@)
1

N N w
o ) o
T T T

Conductivity, k/k,

-
[6)]
T

1.0 I I I I I
0 0.1 0.2 03 04 05 06

Inclusion Concentration, ¢

Fig. 3. Effective conductivity of a material containing a volume fraction ¢ of inclusions, each surrounded by an interphase zone whose
conductivity is described by an equation of the form of Eq. (5). The inclusions are taken to be five times more conductive than the
matrix. In this case the parameter D is defined by D = (ky, — kig)/km.
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example, consider the case of spherical inclusions in a homogeneous matrix. For concreteness, assume
K., > K;. When 4; = 4, =0, Eq. (15) reduces to
Keff - 1 — 2[(Km — Ki)/(Ki + 2Km)]c
Km 1 + [(Km - Kl)/(Kl + 2Km)}c ’

(30)

which is the Hashin—Shtrikman upper bound on the bulk modulus, and is also the Hashin—Shtrikman
upper bound on the effective conductivity (Christensen, 1979)! Further relationships between effective elas-
tic moduli and effective conductivity are discussed by Kachanov et al. (2001).
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